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Abstract
One reason for observing in practice a false positive or negative correlation between

two random variables, which are either not correlated or correlated with a different

direction, is the overrepresentation in the sample of individuals satisfying specific

properties. In 1946, Berkson first illustrated the presence of a false correlation due to

this last reason, which is known as Berkson’s paradox and is one of the most famous

paradox in probability and statistics. In this paper, the concept of weighted distribu-

tions is utilized to describe Berskon’s paradox. Moreover, a proper procedure is sug-

gested to make inference for the population given a biased sample which possesses

all the characteristics of Berkson’s paradox. A real data application for patients with

dementia due to Alzheimer’s disease demonstrates that the proposed method reveals

characteristics of the population that are masked by the sampling procedure.

K E Y W O R D S
ABC rejection algorithm, Alzheimer’s disease, Berkson’s fallacy, biased sampling, likelihood-free infer-

ence

1 INTRODUCTION

Very often in practical applications a false (positive or negative) correlation is observed between two random variables (r.v.),

say 𝑋 and 𝑌 , that are either not correlated or correlated with a different direction. The observed false correlation may occur

due to a number of reasons. For instance, there might be a third, lurking variable, say 𝑍, which is not included in the study or

is difficult to be identified, that makes the relationship appear stronger or weaker than it actually is. Another reason which can

lead to observe a false correlation among two characteristics is the overrepresentation in the sample of individuals satisfying

specific properties. Berkson (1946) first illustrated the presence of a false correlation due to this last reason, with a case-control
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study linking diabetes with cholecystitis amongst inpatients who seek care. The two diseases were found to be positive correlated

even if they are independent in the population. Berkson himself explained this spuriously finding by recognizing that a patient

with more than one disease was more likely to be hospitalized than a patient with only a single disease. Since then, such false

observed correlation due to a bias sample, is known as Berkson’s paradox or Berkson’s bias or fallacy. It can arise in prospective

or retrospective studies, and in randomized or observational settings.

Berkson’s paradox is widely recognized in many fields including medicine and epidemiology (Feinstein, Walter, & Horwitz,

1986; Peritz, 1984; Westreich, 2012) and social sciences (Morgan, 2013). Some authors encourage physicians to understand

Berkson’s paradox in order to avoid misinterpreting data whenever counter-intuitive findings are observed and some others have

considered aspects of adjusting these findings. For instance, Geneletti, Best, Toledano, Elliot, and Richardson (2013) introduced

the so-called Bias Breaking Model to provide a statistical solution to selection bias. The basic assumption behind this model is

that there is a variable, termed the bias breaking variable, which is associated with both the selection and the exposure, and in

some way separates them. The conditions for a variable to be bias breaking are formulated in terms of conditional independencies

and are represented by directed acyclic graphs (DAGs). However, in many cases, it is difficult to identify the bias breaking

variable. The structure of bias due to the selection procedure was first described in the DAG literature by Pearl (1995) and

Spirtes, Glymour, and Scheines (1993). For more details on causal diagram theory and selection bias, see for instance Greenland

(2003); Hernan, Hernandez-Diaz, and Robins (2004); VanderWeel, Herman, and Robins (2008). Some other methods used to

adjust selection bias are the poststratification (Samuelsen et al., 2007) and the inverse probability weighting (IPW) (Rotnitzky

& Robins, 2005). Both methods are aimed at adjusting for potential biases. Poststratification is used to achieve better accuracy

by making the sample more representative of the target population, while IPW uses external data to assign to each subject a

weight which is the inverse of its probability of selection.

Since Berkson’s paradox occurs actually by the overrepresentation in the sample of individuals satisfying specific properties,

the Berkson’s paradox can be interpreted as a selection bias problem, resulting to a sample which is not representative of the

population intended to analyzed. Extending the basic ideas of Fisher (1934), Rao (1965) introduced the concept of a weighted

distribution as a method of adjustment applicable to many situations in which the recorded observations cannot be considered

as a random sample from the original distribution due for instance to the nonobservability of some events. The purpose of the

present paper is to propose a method, using the concept of weighted distributions, to make inference for the population given a

biased sample which possesses all the characteristics of Berkson’s paradox. Although, the proposed method shares some ideas

with the aforementioned IPW method, it has to be pointed out that the IPW applies, to the best of our knowledge, to 2 × 2 tables

and demands external data. On the other hand, the proposed method, based on the weighted distributions, applies to data from

continuous r.v.’s under the assumption that the parametric form of the distribution of the r.v.’s is known. Finally, comparing

with methods for adjusting selection bias like the Bias Breaking Model there is no need for identifying a third variable which is

associated with the selection.

The rest of the paper is organized as follows. In Section 2, a brief introduction to the concept of weighted distributions is

given and weight functions are proposed which can formulate four different scenarios, in which members of the population

are overrepresented in the sample and this overrepresentation causes falsely observed correlations. Because in most cases the

likelihood of the proposed model is complex, the approximate Bayesian computation rejection algorithm, a likelihood-free

method, is used for statistical inference in Section 3. Some necessary details for implementing this algorithm in practice are

also given in Section 3. In Section 4, a real data application for patients with dementia due to Alzheimer’s disease is presented.

Finally, some concluding remarks are given in the last section.

2 WEIGHT FUNCTIONS FOR MODELING BERKSON’S PARADOX

As already mentioned, Berkson’s paradox is actually a selection bias problem, caused from the fact that the sample being

observed is not a random sample of the population. Rao (1965) introduced the concept of the univariate weighted distributions

to describe the biasness in a sample. Biased samples do not only emerge by applying unintentionally a biased sampling scheme

but in many cases arise naturally by the nature of the problem (see, e.g., Afonso & Corte Real, 2016; Gupta & Kirmani, 1990;

Patil & Rao, 1978). Moving one step forward, we will adopt the following definition of bivariate weighted distributions (see for

instance Mahfoud & Patil, 1982; Sarabia & Gomez-Deniz, 2008) for the study of Berkson’s paradox in order to adjust the bias

in the sample.

Definition 2.1. Let (𝑋, 𝑌 ) be a two-dimensional random vector with joint probability density function (p.d.f.) 𝑓 (𝑥, 𝑦; 𝜃), where 𝜃

is an unknown 𝑠-dimensional parameter, which belongs on a parameter space Θ, where Θ ⊆ 𝑅𝑠 with 𝑠 ≥ 1. The two-dimensional
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random vector (𝑋𝑤, 𝑌𝑤) with joint p.d.f.

𝑓𝑤(𝑥, 𝑦; 𝜃) =
𝑤(𝑥, 𝑦; 𝜃)

𝐸{𝑤(𝑋, 𝑌 ; 𝜃)}
𝑓 (𝑥, 𝑦; 𝜃), (1)

is called the vector of the weighted random variables corresponding to (𝑋, 𝑌 ), associated with 𝑤(𝑥, 𝑦; 𝜃), a non-negative func-

tion, that is, 𝑤 ∶ 𝑅2 → 𝑅+, such that 𝐸{𝑤(𝑋, 𝑌 ; 𝜃)} <∞. The p.d.f. 𝑓𝑤(𝑥, 𝑦; 𝜃) is called the bivariate weighted pdf corre-

sponding to 𝑓 (𝑥, 𝑦; 𝜃), associated with 𝑤, while any random vector with density 𝑓𝑤 is denoted by (𝑋𝑤, 𝑌𝑤).

Some properties of the bivariate and multivariate weighted distributions can be found, among others, in Arnold and Nagaraja

(1991), Jain and Nanda (1995), Nanda and Jain (1999) and Navarro, Ruiz, and Aguila (2006). Arnold and Nagaraja (1991)

focused on the dependence in bivariate weighted distributions and gave the following result (for a proof, see Alavi & Chinipardaz,

2007).

Proposition 2.2 (Arnold & Nagaraja, 1991). For an arbitrary weight function 𝑤(𝑥, 𝑦) any two of the following statements
together imply the third:

i) 𝑋 and 𝑌 are independent,
ii) 𝑋𝑤 and 𝑌𝑤 are independent,

iii) 𝑤(𝑥, 𝑦) is of the form 𝑤1(𝑥)𝑤2(𝑦) for (𝑥, 𝑦) ∈ 𝑆1 × 𝑆2, the Cartesian product of the supports of 𝑋 and 𝑌 , respectively.

Based on Proposition 2.2, if𝑋 and 𝑌 are independent r.v.s, then, in order for𝑋𝑤 and 𝑌𝑤 to be dependent, the weight function

should not be of the form 𝑤1(𝑥)𝑤2(𝑦). One possible family of weight functions, among many others, that induce dependence

among the weight r.v.s may be given by

𝑤(𝑥, 𝑦; 𝜃, 𝛾1, 𝛾2) = 1 − ℎ(𝑥; 𝜃, 𝛾1)𝑔(𝑦; 𝜃, 𝛾2) (2)

for suitable choices ℎ(𝑥; 𝜃, 𝛾1) and 𝑔(𝑦; 𝜃, 𝛾2), where 𝜃 is the s-dimensional vector of parameters of the bivariate distribution of

(𝑋, 𝑌 ) and 𝛾 = (𝛾1, 𝛾2) is a vector of extra parameters with 𝛾1, 𝛾2 > 0. Note that ℎ(𝑥; 𝜃, 𝛾1) and 𝑔(𝑦; 𝜃, 𝛾2) should guarantee that

the weight function 𝑤(𝑥, 𝑦; 𝜃, 𝛾1, 𝛾2) is non-negative, with 𝐸{𝑤(𝑋, 𝑌 ; 𝜃, 𝛾1, 𝛾2)} < ∞. At the same time both functions should

be such that the 𝑤(𝑥, 𝑦; 𝜃, 𝛾1, 𝛾2) to reflect the probability of a pair (𝑥, 𝑦) to be selected in the sample. This means for instance

that ℎ(𝑥; 𝜃, 𝛾1) and 𝑔(𝑦; 𝜃, 𝛾2) should take small (large) values in areas in which a pair (𝑥, 𝑦) has high (small) probability to be

selected in the sample.

In the sequel, four general cases of a biased sample which may cause Berkson’s paradox will be studied. Let us consider first

the case (Case A hereafter) where units with large values on 𝑋 and/or large values on 𝑌 are more likely to be selected. This

means that the nonrandom sampling mechanism gives to pairs (𝑥, 𝑦) with large values on 𝑋 and/or on 𝑌 high probability to

be observed. On the other hand, it gives small probability to pairs (𝑥, 𝑦) with small values on both 𝑋 and 𝑌 . One reasonable

and mathematically convenient choice, among an infinite number of functions with the above behavior, for the weight function

𝑤(𝑥, 𝑦; 𝜃, 𝛾1, 𝛾2) may be the following:

𝑤1(𝑥, 𝑦; 𝜃, 𝛾1, 𝛾2) = 1 − {1 − 𝐹𝑋(𝑥; 𝜃𝑥)}1∕𝛾1{1 − 𝐹𝑌 (𝑦; 𝜃𝑦)}1∕𝛾2 , for 𝛾1, 𝛾2 ≥ 0, (3)

where 𝜃𝑥 and 𝜃𝑦 are functions of 𝜃 and 𝐹𝑋(𝑥; 𝜃𝑥) and 𝐹𝑌 (𝑦; 𝜃𝑦) are the c.d.f. of 𝑋 and 𝑌 , respectively.

Case A is illustrated in the first plot in Figure 1. In this plot, a simulated sample of size 𝑛 = 50 (denoted by black points) was

generated from the bivariate random vector (𝑋𝑤1
, 𝑌𝑤1

) corresponding to the random vector (𝑋, 𝑌 ), with 𝑋 and 𝑌 independent

normal distributed r.v.s. with mean zero and standard deviation 2 and with values of 𝛾1, 𝛾2 similar to those obtained by the data

set used in Section 4. For comparison purposes the contour plot of the p.d.f. of (𝑋, 𝑌 ) is also given. From the plot it is obvious

that there is indeed a tendency to observe pairs with large values on 𝑋 and/or 𝑌 and that the left bottom part of the population

is underrepresented in the sample.

Except from Case A, three other types of sampling mechanisms which may cause false correlation, due to the biasness in the

sample, will be discussed. Case B corresponds to the nonrandom sampling where units with small values on 𝑋 and/or small

values on 𝑌 are more likely to be observed. In this case, with similar arguments, one reasonable and mathematically convenient

choice for the weight function 𝑤(𝑥, 𝑦; 𝜃, 𝛾1, 𝛾2) is the following:

𝑤2(𝑥, 𝑦; 𝜃, 𝛾1, 𝛾2) = 1 − {𝐹𝑋(𝑥; 𝜃𝑥)}1∕𝛾1{𝐹𝑌 (𝑦; 𝜃𝑦)}1∕𝛾2 . (4)
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F I G U R E 1 The contour plot of independent normal distributed random variables (𝑋, 𝑌 ) with mean zero and standard deviation 2 and the

simulated samples of size 𝑛 = 50 (black points) for the four cases of Berkson’s paradox. Cases A (first plot) and B (second plot) illustrate a false

negative correlation while cases C (third plot) and D (fourth plot) illustrate a false positive correlation

In Case C (Case D) pairs (𝑥, 𝑦) with large (small) values on𝑋 and/or small (large) values on 𝑌 are more likely to be included

in the sample. In this frame, the following weight functions:

𝑤3(𝑥, 𝑦; 𝜃, 𝛾1, 𝛾2) = 1 − {1 − 𝐹𝑋(𝑥; 𝜃𝑥)}1∕𝛾1{𝐹𝑌 (𝑦; 𝜃𝑦)}1∕𝛾2 , (5)

and

𝑤4(𝑥, 𝑦; 𝜃, 𝛾1, 𝛾2) = 1 − {𝐹𝑋(𝑥; 𝜃𝑥)}1∕𝛾1{1 − 𝐹𝑌 (𝑦; 𝜃𝑦)}1∕𝛾2 , (6)

are reasonable choices for Case C and D, respectively.

Cases B, C and D are illustrated in the second, third and fourth plot in Figure 1. The observed samples of size 𝑛 = 50 were

generated by assuming a bivariate normal distribution with the same characteristics as previously; however, the weight functions

given in relations (4), (5), and (6) were used.

Remark 2.3. As already mentioned, the weight functions 𝑤𝑖(𝑥, 𝑦; 𝜃, 𝛾1, 𝛾2), 𝑖 = 1,… , 4, are just reasonable functions to be

adopted under the concept of weighted distributions in order to model Cases A–D. Of course, there are infinity other possible

forms of weight functions that may also be used to model such situations, although, we emphasize to the convenient monotonicity

property with respect to 𝑥 and 𝑦 that these weight function posses and to the use of the marginal c.d.f. of 𝑋 and 𝑌 which make

these functions a more instinctive choice than others.

In the sequel, the effect of the weight functions 𝑤𝑖(𝑥, 𝑦; 𝜃, 𝛾1, 𝛾2), 𝑖 = 1,… , 4, on 𝑐𝑜𝑣(𝑋𝑤, 𝑌𝑤), that is, on the dependence

structure of 𝑋𝑤 and 𝑌𝑤 will be studied. The properties obtained will be later on used in order to help us choose one of the four

weight functions for real applicative purposes. Before we proceed, some useful definitions are presented.

Definition 2.4. We say that a non-negative function 𝜙(𝑥, 𝑦) is a reverse regular of order 2 (RR2) if 𝜙(𝑥1, 𝑦1)𝜙(𝑥2, 𝑦2) ≤
𝜙(𝑥1, 𝑦2)𝜙(𝑥2, 𝑦1) whenever 𝑥1 < 𝑥2 and 𝑦1 < 𝑦2, while we say that is totally positive of order 2 (TP2) if the inequality

is reversed.

Proposition 2.5. Suppose that 𝑋 and 𝑌 are independent r.v.s. Then 𝑐𝑜𝑣(𝑋𝑤𝑖, 𝑌𝑤𝑖 ) ≤ 0, for 𝑖 = 1, 2, while 𝑐𝑜𝑣(𝑋𝑤𝑖, 𝑌𝑤𝑖 ) ≥ 0,
for 𝑖 = 3, 4.

Proof. It is easily proved that the weight function𝑤𝑖(𝑥, 𝑦; 𝜃, 𝛾1, 𝛾2) is RR2 for 𝑖 = 1, 2, while𝑤𝑖(𝑥, 𝑦; 𝜃, 𝛾1, 𝛾2) is TP2 for 𝑖 = 3, 4.

Hence from Theorems 4.1. and 4.2 given in Nanda and Jain (1999), it is concluded that 𝑐𝑜𝑣(𝑋𝑤𝑖, 𝑌𝑤𝑖 ) ≤ 0, for 𝑖 = 1, 2, while

𝑐𝑜𝑣(𝑋𝑤𝑖, 𝑌𝑤𝑖 ) ≥ 0, for 𝑖 = 3, 4. □

In the previous proposition, the effect of the weight functions 𝑤𝑖(𝑥, 𝑦; 𝜃, 𝛾1, 𝛾2), 𝑖 = 1,… , 4, on the dependence structure of

𝑋𝑤𝑖
and 𝑌𝑤𝑖 , was presented under the assumption of the independence of𝑋 and 𝑌 . The next proposition states the preservation

property of some dependence concepts under the weighting used in this paper. In the sequel, PLRD stands for positive likelihood

ratio dependence, while NLRD stands for negative likelihood ratio dependence. Note that when 𝑋 has a density 𝑓 then PLRD

(NLRD) is equivalent to the condition that 𝑓 is TP2 (RR2). For more definitions and details of the dependence concepts used

in the sequel, we refer the reader to Nelsen (2006).
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Proposition 2.6.

(i) Let (𝑋, 𝑌 ) be PLRD; then (𝑋𝑤3
, 𝑌𝑤3

) and (𝑋𝑤4
, 𝑌𝑤4

) are PLRD, which implies that 𝑐𝑜𝑣(𝑋𝑤3
, 𝑌𝑤3

) ≥ 0 and
𝑐𝑜𝑣(𝑋𝑤4

, 𝑌𝑤4
) ≥ 0.

(ii) Let (𝑋, 𝑌 ) be NLRD; then (𝑋𝑤1
, 𝑌𝑤1

) and (𝑋𝑤2
, 𝑌𝑤2

) are NLRD, which implies that 𝑐𝑜𝑣(𝑋𝑤1
, 𝑌𝑤1

) ≤ 0 and
𝑐𝑜𝑣(𝑋𝑤2

, 𝑌𝑤2
) ≤ 0.

Proof.

(i) After some algebra and based on Izadkhah, Amini, and Borzadaran Mohtashami (2016, Theorem 1), when (𝑋, 𝑌 ) is PLRD,

then (𝑋𝑤3
, 𝑌𝑤3

) and (𝑋𝑤4
, 𝑌𝑤4

) are PLRD, which implies 𝑐𝑜𝑣(𝑋𝑤3
, 𝑌𝑤3

) ≥ 0 and 𝑐𝑜𝑣(𝑋𝑤4
, 𝑌𝑤4

) ≥ 0.

(ii) It is easily proved that the weight functions 𝑤1(𝑥, 𝑦; 𝜃, 𝛾1, 𝛾2) and 𝑤2(𝑥, 𝑦; 𝜃, 𝛾1, 𝛾2) are reverse regular of order 2 (RR2)

in (𝑥, 𝑦). Then based on Izadkhah, Amini, and Borzadaran Mohtashami (2016, Theorem 1), when (𝑋, 𝑌 ) is NLRD then

(𝑋𝑤1
, 𝑌𝑤1

) and (𝑋𝑤2
, 𝑌𝑤2

) are NLRD, which implies 𝑐𝑜𝑣(𝑋𝑤1
, 𝑌𝑤1

) ≤ 0 and 𝑐𝑜𝑣(𝑋𝑤2
, 𝑌𝑤2

) ≤ 0. □

Proposition 2.6 states that the covariance of (𝑋, 𝑌 ) and the covariance of its weighted version (𝑋𝑤𝑖, 𝑌𝑤𝑖 ), 𝑖 = 3, 4 ((𝑋𝑤𝑖, 𝑌𝑤𝑖 ),
𝑖 = 1, 2) will always have the same sign or will be zero whenever (𝑋, 𝑌 ) is PLRD (NLRD). For instance, if (𝑋, 𝑌 ) ∼ 𝑁2(𝜇,Σ)
with correlation coefficient 𝜌 ≥ 0 then (𝑋, 𝑌 ) is PLRD and the weight functions 𝑤3 and 𝑤4 ensure that 𝑐𝑜𝑣(𝑋𝑤𝑖, 𝑌𝑤𝑖 ) ≥ 0, for

𝑖 = 3, 4. On the other hand, if (𝑋, 𝑌 ) ∼ 𝑁2(𝜇,Σ) with 𝜌 ≤ 0 then (𝑋, 𝑌 ) is NLRD and the weight functions 𝑤1 and 𝑤2 ensure

that 𝑐𝑜𝑣(𝑋𝑤𝑖, 𝑌𝑤𝑖 ) ≤ 0, for 𝑖 = 1, 2. However, it is an open problem to make a general comment about the sign of 𝑐𝑜𝑣(𝑋𝑤𝑖, 𝑌𝑤𝑖 ),
𝑖 = 1,… , 4 as well as a comment about the sign of the difference between 𝑐𝑜𝑣(𝑋𝑤𝑖, 𝑌𝑤𝑖 ), 𝑖 = 1,… , 4 and 𝑐𝑜𝑣(𝑋, 𝑌 ), without

the previous assumptions.

Before closing this section, taking into account the interpretation of the four weight functions and the results in Proposi-

tions 2.5 and 2.6, practical rules in order to choose between one of the four weight functions for real applicative purposes are

given in the next remark, while an example of how this choice can be made in a real life problem is presented in details in

Section 4.

Remark 2.7. The choice of the weight function is mainly based on the nature of the problem and the characteristics inherited to

the observed sample by each weight function. If the nonrandom sampling is known, then 𝑤1 (𝑤2) is adopted when units with

large (small) values on 𝑋 and/or large (small) values on 𝑌 are more likely to be selected, while 𝑤3 (𝑤4) is adopted when units

with large (small) values on𝑋 and/or small (large) values on 𝑌 are more likely to be selected. Consider now the case that no prior

information about the nonrandom sampling is available; however, it is beforehand known that 𝑋 and 𝑌 are independent. Then,

based on Proposition 2.5, in case of false negative correlation one has to choose between the weight functions𝑤𝑖(𝑥, 𝑦; 𝜃, 𝛾1, 𝛾2),
𝑖 = 1, 2, since 𝑐𝑜𝑣(𝑋𝑤𝑖, 𝑌𝑤𝑖 ) < 0, 𝑖 = 1, 2. On the other hand, if a false positive correlation is observed, then the two candidate

weight functions are 𝑤𝑖(𝑥, 𝑦; 𝜃, 𝛾1, 𝛾2), 𝑖 = 3, 4, since 𝑐𝑜𝑣(𝑋𝑤𝑖, 𝑌𝑤𝑖 ) > 0, 𝑖 = 3, 4. To choose, in both cases, between the two

candidate weight functions, one should again examine the nature of the sampling mechanism and recognize which pairs are

more likely to be observed and which not, as previously explained.

Finally, if 𝑋 and 𝑌 are not independent, but they are PLRD (NLRD) then, based on Proposition 2.6, the weight func-

tions 𝑤𝑖, 𝑖 = 3, 4 (𝑤𝑖, 𝑖 = 1, 2) ensure that the covariance of the weighted variables will have the same sign or will be zero.

Therefore, if 𝑋 and 𝑌 are PLRD (NLRD) then 𝑤𝑖, 𝑖 = 3, 4 (𝑤𝑖, 𝑖 = 1, 2) cannot be used for modeling Berkson’s para-

dox, that is, for modeling false negative (positive) correlation. Next, again the selection between the other two candidate

weight functions relies on the correct recognition of the sampling mechanism nature as before and with the rules given

previously.

3 INFERENCE UNDER THE PROPOSED MODEL

The likelihood function, given a biased sample of 𝑛 observations𝐷𝑖 = (𝑋𝑖, 𝑌𝑖), 𝑖 = 1,… , 𝑛 from a parent population with known,

based on previous studies, parametrical form, but with unknown parameters, is in most cases complex. As a result, evaluating the

likelihood can be computationally very expensive and in some cases even impossible to write it analytically. These characteristics

make the adoption of a likelihood-free method (Diggle & Gratton, 1984; Rubin, 1984) necessary to perform inference. Such a

method is the Approximate Bayesian computation (ABC) method which constitutes a class of computational methods routed in

Bayesian Statistics. The ABC rejection algorithm is described in the following steps:
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1. a) Adopt a prior distribution for each parameter involved in the expression of the weighted distribution, that is, for each

component of the vector of parameters 𝜃 of the bivariate random variable and 𝛾1, 𝛾2.

b) Simulate 𝜃∗, 𝛾∗1 , and 𝛾∗2 from the previous prior distributions. Denote 𝜁∗ = (𝜃∗, 𝛾∗1 , 𝛾
∗
2 ).

2. Plug 𝜁∗ to the proposed weighted distribution and simulate a sample 𝐷∗
𝑖
= (𝑋∗

𝑖
, 𝑌 ∗
𝑖
), 𝑖 = 1,… , 𝑛 from the model with p.d.f.

𝑓𝑤(𝑥, 𝑦; 𝜃∗, 𝛾∗1 , 𝛾
∗
2 ).

3. Compute the discrepancy between the simulated and the observed data set, that is, compute Δ𝜁∗ = 𝑑(𝐷,𝐷∗), where 𝑑 is a

discrepancy measure.

4. Retain 𝜁∗ if Δ𝜁∗ < 𝜖, for some 𝜖 > 0. Go to step 1 b) and repeat𝑀 times.

The above algorithm describes the procedure to obtain a sample from a distribution close to the posterior distribution of 𝜁∗

by comparing simulated samples with the original sample. In the sequel some necessary details for implementing the previous

algorithm in practice are discussed.

1. A prior distribution for each component of the parameter 𝜃 as well as for 𝛾1 and 𝛾2 should be selected. Any previous knowledge

has to be implemented in these distributions. Fortunately, such knowledge for the components of 𝜃 is expected to exist, since

we are aware of possible occurrence of Berkson’s paradox. On the other hand, no prior information is expected to be available

for the 𝛾1, 𝛾2 parameters. For that reason, initially prior distributions with large standard deviations are recommended. After

a number of nonrejections (see Step 4), the prior distributions of all the parameters can be updated using the information

gained from these samples to increase the rate of acceptance.

To keep the proposed method as simple as possible we recommend the use of truncated at zero normal distribution as

prior distribution for any positive parameter, the normal distribution for any real parameter and the uniform distribution

for any parameter bounded on a finite interval [a,b]. These prior distributions are the maximum entropy priors given only

the continuity and support of the parameters (Schroeder, 2010). Such priors may not be the optimal, since any other prior

distribution that incorporates in a better, more informative way, any prior expert knowledge from the problem domain is

of course preferable. For instance, in the application presented in Section 4, a linear transformation of a beta distribution

is adopted as a prior for the correlation coefficient. If nonoptimal priors are used, the method can still yield reasonable

parameter estimates, although adopting such priors may result in an increased rejection rate and, therefore, to a larger number

of simulations (see Step 4).

2. One should acknowledge that simulating a random sample directly from 𝑓𝑤(𝑥, 𝑦; 𝜁∗) is not always an easy task. Fortunately,

in most of the cases, a large number,𝑁 , of observations can be generated from 𝑓 (𝑥, 𝑦; 𝜃∗). This sample of𝑁 observations can

serve as the “population.” To obtain a sample from 𝑓𝑤(𝑥, 𝑦; 𝜁∗), one can then apply a weighted sampling without replacement

procedure to select 𝑛 observations from the “population” with weights proportional to𝑤(𝑥, 𝑦; 𝜁∗). Obviously, this procedure

adds another layer of approximation to the posterior distribution of the parameters but this should not be that significant if

the “population” size𝑁 is relatively large compared to the sample size 𝑛.

3. A discrepancy measure can be defined using the integrated squared error given by

𝑇 = ∫𝑥 ∫𝑦
(
𝑓𝐷(𝑥, 𝑦) − 𝑓𝐷∗ (𝑥, 𝑦)

)2
𝑑𝑦𝑑𝑥,

where 𝑓𝐷(𝑥, 𝑦) and 𝑓𝐷∗ (𝑥, 𝑦) are the kernel density estimates based on the observed𝐷 and the simulated𝐷∗ sample, respec-

tively. Under the (null) hypothesis that both samples share the same density, 𝑇 is asymptotically normally distributed with

known mean and standard deviation. As a consequence, the absolute value of the standardized version of 𝑇 can serve as

discrepancy measure 𝑑(𝐷,𝐷∗) between the two samples (for more details, see Duong, Goud, & Schauer, 2012).

4. Values of 𝜖 close to 0 guarantee that the retained values of 𝜁∗ consist of a sample from a distribution close to the posterior

distribution of 𝜁 . However, very small values lead to high rejection rates and therefore to a large number of simulations

to obtain a relative large number of observations from the posterior distribution. We recommend the use of 𝜖 = 1.96 that

corresponds to a significant level 0.05 for testing the null hypothesis that both samples share the same density.

Remark 3.1. ABC rejection algorithm allows the handling of complex models with a large number of parameters, although

as the number of parameters increases, the acceptance rate of the simulated samples decreases exponentially due to the global

acceptance criterion (Csilléry, Blum, Gaggiotti, & François, 2010). As a consequence, complex models require large number of

simulations that may be time consuming or can require significant computing power.



244 ECONOMOU ET AL.

4 APPLICATION

4.1 Alzheimer’s disease
Brain hypometabolism is related to both Alzheimer’s disease (AD), the most common cause of late-onset dementia (Alzheimer’s

Association, 2016; Rasmussen, Tybjæaerg-Hansen, Nordestgaard, & Frikke-Schmidt, 2018) and normal aging. AD is character-

ized by a reduction of metabolism in bilateral angular gyrus, posterior cingulate/precuneus and inferior temporal cortex (Rice &

Bisdas, 2017). Fluorine-18-labeled fluorodeoxyglucose (18F-FDG), a radioligand used in positron emission tomography (PET),

enables the detection of the typical AD hypometabolic pattern not only in AD dementia, but also in mild cognitive impairment

(MCI) due to AD, a predementia stage of AD (Alexopoulos, Grimmer, Perneczky, Domes, & Kurz, 2006). Moreover, 18F-FDG

uptake decreases in large regions of the brain with advancing age in cognitively normal elderly individuals with or without AD

neuropathological changes (Ishibashi et al., 2018; Jiang et al., 2018; Jack et al., 2018).

The application is based on data from the AD Neuroimaging Initiative (ADNI) databank. ADNI is a collaboration between

approximately 50 academic institutions and private corporations in the USA and Canada and is supported by the National Insti-

tute on Aging (NIA), nonprofit organizations and private pharmaceutical companies. General eligibility criteria are described

at www.adni-info.org/Scientists/ADNIGrant/ProtocolSummary.aspx. The study procedures were approved by the institutional

review boards of all participating centers and written informed consent was obtained from all participants or authorized represen-

tatives. All procedures performed in the study were in accordance with the 1964 Helsinki declaration and its later amendments

or comparable ethical standards. The data for this study were obtained from www.adni-info.org in 2014 (Robb et al., 2017) and

consists of 𝑛 = 76 patients with AD dementia.

The purpose of this application is to examine if the proposed method can reveal characteristics of the population of interest

based on a biased sample. More specifically, we will restrict our data to the data set on which normally a clinic-based study for

patients with AD will be mainly focused, that is, patients with AD dementia. The population of interest encompasses individuals

with memory concerns, that is, patients with AD dementia or with MCI and individuals with subjective memory complaints,

who seek advice and care at memory clinics. Obviously, this population does not include all the elderly individuals but reflects

the whole continuum of cognitive performance in aging, ranging from very mild cognitive deterioration due to healthy cognitive

aging to dementia.

Remark 4.1. Before proceeding in the analysis based on the weight functions proposed in Section 2, we have to note once again

that the weight functions used is only some possible and logical choices from a collection of an arbitrary number of weight

functions, which fulfilled the same properties. Moreover, as a referee pointed out, the proposed model is just one among other

possible techniques (see also a remark in the next section) that can be used to deal with Berkson’s paradox.

4.2 Sampling procedure and the proposed method
For the patients with AD dementia included in the present application, we have recorded their age𝑋 (as an important risk factor

for the development of AD) and their FDG PET scores 𝑌 . The distribution of both FDG PET scores and age in the population

of interest can be approximated by a normal distribution. As a result, we assume that the population distribution of the bivariate

random vector (𝑋, 𝑌 ) is the bivariate normal distribution with location parameter (𝜇𝑥, 𝜇𝑦)
′
, scale parameters 𝜎𝑥 > 0 and 𝜎𝑦 > 0

and 𝜌 the correlation between𝑋 and 𝑌 , which will actually be the main interest of the present analysis. Based on prior knowledge

𝜌 is expected to be nonpositive (𝜌 ≤ 0) due to the negative influence of advancing age on brain metabolism. Regarding the age, it

is of note that the total number of people with dementia, MCI and subjective memory complaints, follows a unimodal distribution

which rises up to the age of 80–84 years and afterward declines (Drew, 2018; Fritsch, McClendon, Wallendal, Hyde, & Larsen,

2014; Prince et al., 2014; Warda, Arrighib, Michelsa, & Cedarbaum, 2011). This distribution, which approximates to normal

distribution, is attributed to the changing balance between the increasing age-specific prevalence of cognitive deterioration and

the increasing mortality as age advances (Drew, 2018; Prince et al., 2014).

For the 76 AD dementia patients in the study, the mean age was �̄� = 75.253 years (sd = 8.588) and the mean FDG PET score

was �̄� = 1.0761 (sd = 0.1211). The scatterplot of the observed data is presented in Figure 2. To avoid unnecessary repetition,

we defer the discussion of the details of this figure to Section 4.3. At this point, we only emphasize that there is a clear positive

correlation between age and FDG PET scores. In support of the latter observation, the Spearman’s correlation coefficient 𝑟 is

equal 0.392 (p-value = 0.0005) indicating indeed a clear positive correlation. This finding contradicts the well-known, estab-

lished negative influence of advancing age on brain metabolism. This finding can only be explained in the context of Berkson’s

paradox and the biased sample used.

file:www.adni-info.org/Scientists/ADNIGrant/ProtocolSummary.aspx
file:www.adni-info.org
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F I G U R E 2 The contour plot of the estimated bivariate normal (using the mean of the posterior distributions) under the incorrect 𝑤3 (left plot)

and the correct 𝑤4 (right plot) weight function for the AD data

In order to incorporate in the analysis the bias caused by the sampling procedure, a weighted distribution of the form (1) can

be fitted with 𝑓𝑋𝑌 (𝑥, 𝑦; 𝜃), the p.d.f. of the bivariate normal distribution. In the previous sections, four different weight functions

were defined for dealing with four different cases of Berkson’s paradox (Cases A–D). The next reasonable question is how to

choose one of these four weight functions. Based on prior knowledge, it is established that 𝜌 ≤ 0, and hence, since (𝑋, 𝑌 ) is

assumed to be bivariate normal distributed, we have that (𝑋, 𝑌 ) is NLRD. Taking into account Proposition 2.6 (ii), (𝑋𝑤1
, 𝑌𝑤1

)
and (𝑋𝑤2

, 𝑌𝑤2
) is also NLRD, which implies that 𝑐𝑜𝑣(𝑋𝑤1

, 𝑌𝑤1
) ≤ 0 and 𝑐𝑜𝑣(𝑋𝑤2

, 𝑌𝑤2
) ≤ 0. Since in the biased sample, the

Spearman’s correlation coefficient 𝑟 is equal to 0.392 and indicates a clear positive correlation, the weight functions 𝑤1 and𝑤2
are excluded as possible weight functions. Therefore, there are only two candidate weight functions, that is, the weight functions

𝑤3 and 𝑤4.

The next question is if there is a way to choose one of them based on the nature of the problem and the properties satisfied

by each weight function. As it has already been underscored, advancing age pertains to both decrease in brain metabolism and

increase in incidence of AD, which is characterized by brain hypometabolism. Nonetheless, participants of research initiatives,

such as ADNI, who are highly sensible with regard to cognitive impairment, are not very old, so that they can serve as vol-

unteers, and seek advice and help early, when they face only mild memory deficits and their cerebral hypometabolism is very

mild too. As a result, a sample of a research initiative such as ADNI is more likely to include elderly individuals with smaller

age and/or individuals with not so severe reduction in cerebral metabolism, that is, with relative high FDG PET scores. The

previous properties are satisfied by the weight function 𝑤4(𝑥, 𝑦; , 𝛾1, 𝛾2) (Case D, Figure 1). For comparison reasons although

both 𝑤3(𝑥, 𝑦; , 𝛾1, 𝛾2) (incorrect choice) and 𝑤4(𝑥, 𝑦; , 𝛾1, 𝛾2) (correct choice) will be used to analyze the observed data.

Remark 4.2. As mentioned in the introduction, the false (positive in this application) correlation may occur due to a number of

reasons. One such reason could be the presence of a third, lurking variable, say 𝑍. For instance, a referee pointed out that the

apparent positive correlation between 𝑋 and 𝑌 in the observed sample could possibly be explained or even turned around with

some third variable such as overall health status. Even if such an r.v. could be identified and included in the analysis, it may not

offered any clear explanation on the overrepresentation in the sample of individual satisfying specific properties, although the

proposed model allows to take into consideration the biasness in the sample and to make inference for the population of interest.

Before using the ABC rejection algorithm, under both weigh functions𝑤3 and𝑤4, one should also adopt the prior distributions

for the components of 𝜁 . Initially, the parameters of the prior distributions are selected is such a way to explore the parameter

space in a large range of values. Additionally, any prior information should be incorporated in the selection of the parameters of

the prior distributions. For that reasons the prior distributions of 𝜇𝑥 and 𝜇𝑦 were set to be the𝑁(�̆�𝑥, �̆�𝑥) and𝑁(�̆�𝑦, �̆�𝑦), where �̆�𝑥,

�̆�𝑦, �̆�𝑥 and �̆�𝑦 denote the mean and the standard deviation of the observed 𝑥𝑖𝑠 and 𝑦𝑖𝑠, respectively. The prior distributions of 𝜎𝑥,

𝜎𝑦, 𝛾1 and 𝛾2 were set to be 𝑇𝑁(�̆�𝑥, �̆�𝑥∕3), 𝑇𝑁(�̆�𝑦, �̆�𝑦∕3), 𝑇𝑁(20, 20∕3) and 𝑇𝑁(20, 20∕3), respectively, where 𝑇𝑁 denotes the

truncated normal distribution at zero. For the parameter 𝜌 the linear transformation 2𝑊 − 1 of the𝑊 ∼ 𝑏𝑒𝑡𝑎(𝛼, 𝛽) distribution

was used as prior distribution. The parameters of the transformed beta distribution were set equal to 3 and 5, respectively, in

order for the mean and the mode to be negative (−0.25 and −0.33, respectively) and not to have a relative sharp prior. These

values of the parameters 𝛼 and 𝛽 and the corresponding negative mean and mode of the prior distribution, reflect our prior

knowledge that the brain metabolism and so FDG PET score is decreasing by advancing age.
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T A B L E 1 Descriptive statistics of the posterior distributions of the parameters of the bivariate normal distribution for the AD data under the

incorrect 𝑤3 (upper half) and the correct 𝑤4 (lower half) weight functions based on 30,000 simulated samples

Weight fun. Descr. stat. 𝝁
𝒙

𝝈
𝒙

𝝁
𝒚

𝝈
𝒚

𝝆 𝜸𝟏 𝜸𝟐

𝑤3 2.5% 67.2087 5.2172 1.0805 0.0677 −0.6934 6.7571 6.1368

Nonrejected 25% 71.0854 7.6561 1.1324 0.1014 −0.3953 14.6434 14.5557

samples: 16980 50% 73.1296 9.1251 1.1607 0.1217 −0.1949 18.7840 18.9306

75% 75.1932 10.6573 1.1900 0.1422 0.0248 22.9916 23.5078

97.5% 78.8922 13.5811 1.2429 0.1810 0.4277 30.9346 32.1594

mean 73.1259 9.1978 1.1611 0.1223 −0.1782 18.8218 19.0092

st.dev 2.9962 2.1576 0.0420 0.0293 0.2936 6.1800 6.5923

𝑤4 2.5% 73.7070 5.2534 0.9621 0.0697 −0.6167 5.9535 6.3947

Nonrejected 25% 77.7724 7.7043 1.0164 0.1019 −0.2484 14.9456 14.7380

samples: 14901 50% 80.0921 9.1946 1.0470 0.1208 −0.0163 19.8402 19.1889

75% 82.4436 10.7253 1.0777 0.1408 0.2261 24.8157 23.6558

97.5% 86.8817 13.5772 1.1313 0.1789 0.6164 34.2791 32.1414

mean 80.1438 9.2507 1.0468 0.1217 −0.0099 19.9289 19.2324

st.dev 3.3994 2.1676 0.0440 0.0282 0.3253 7.2159 6.5737

After the nonrejection of 50 samples, that is, after 50 retained observations of 𝜁∗, the prior distribution of each component

was updated using the information gained by these 50 observations. More specifically, the mean and the standard deviation of

the respective retained values of the parameters 𝜇𝑥, 𝜇𝑦, 𝜎𝑥, 𝜎𝑦, 𝛾1 and 𝛾2 were used as the mean and the standard deviation of

the corresponding normal prior distributions or as the 𝜇𝑗 and 𝑐𝑗 parameters of the corresponding truncated at zero normal prior

distribution. The beta prior distribution for 𝜌 was updated to 𝑏𝑒𝑡𝑎(3, 3(1 − �̄�)∕(�̄� + 1)), so that the mean value of the updated

prior distribution to be equal with the mean value �̄� of the retained values of 𝜌.

4.3 Results and discussion
Table 1 presents the descriptive statistics of the corresponding p.d.f. of the posterior distributions of the parameters based

on 16980 and 14901 (56.6% and 49.67%, respectively) nonrejected samples out of 30,000 simulated samples for both weight

functions𝑤3 (upper half) and𝑤4 (lower half). From these results one can conclude that the median and the mean of the posterior

distribution of 𝜌, which is the key parameter of the application, is clearly negative under both models. Additionally, under both

models, approximately 75% of the accepted values for 𝜌 is smaller or slightly larger than zero. This result agrees with our prior

knowledge that brain metabolism and so FDG PET is affected by advancing age. Therefore, it seems that both models provide

similar results regarding the posterior distributions of 𝜌. A similar conclusion holds also for the posterior distributions of 𝛾1 and

𝛾2 and the standard deviations 𝜎𝑥 and 𝜎𝑦 of the random variables since the posterior distributions for these parameters present

similar characteristics under the two models. It is worth mentioning that the posterior distributions of 𝛾1 and 𝛾2 seem to prefer

relative large values. This may reflect the severe biasness induced to the sample by observing only patients with AD dementia.

Nevertheless, different behavior is revealed, when the posterior distributions of the means of the two variables are compared.

For example, under the correct model (𝑤4(𝑥, 𝑦; , 𝛾1, 𝛾2)) the mean age of the population of interest is estimated to be little

over of 80 years, while under the incorrect model (𝑤3(𝑥, 𝑦; , 𝛾1, 𝛾2)) is estimated just over 73 years, a great difference. A similar

observation can be made and for the estimated mean of the FDG PET. Actually, the mean FDG PET score under the one model is

higher than the mean FDG PET score under the other model. These remarks are actually consistent with the differences between

the two models and can serve, combined with any prior knowledge on the population, as a confirmation of the correct choice

between the two candidate weight functions. In the present application, as it is already stated, the mean age of the population

of interest is more likely to be a value close to 80 and for sure larger than the mean age in the sample (�̄� = 75.253), since the

observed sample is based on a cohort that does not reflect a naturalistic clinical setting, due to the advertising strategies that

were employed for participant recruitment. For such studies, it has already been shown that the age of patients is indeed lower

compared to that of nonuniversity centers (Weih et al., 2009).

Moreover, volunteers of such studies are characterized by high sensibility regarding cognitive impairment and seek advice

and help earlier, when they are confronted by relatively mild memory deficits, in comparison to patients of pure clinical settings

(Grimmer et al., 2015; Weih et al., 2009). Thus, less advanced hypometabolism and subsequently higher FDG PET scores are



ECONOMOU ET AL. 247

expected in participants of initiatives such as ADNI than in other individuals with memory complaints. All, the above remarks are

illustrated in Figure 2, in which the contour plots of the two estimated bivariate normal distributions under the incorrect model

𝑤3(𝑥, 𝑦; , 𝛾1, 𝛾2) (left plot) and under the correct model 𝑤4(𝑥, 𝑦; , 𝛾1, 𝛾2) (right plot) using the mean values for the parameters

(denoted with solid lines) from the posterior distributions of the parameters are embedded in the scatterplot of the observed

sample for the AD dementia data. It is clear, that both procedures managed to alter the false positive observed correlation to

negative for the population. The plots also reveal the different characteristics of the two weight functions. In the left plot, it is

assumed incorrectly that individuals with large age or/and small FDG PET are overrepresented in the observed sample, although

such individuals are, in reality, underrepresented due to the nature of the sampling procedure.

Remark 4.3. Ignoring incorrectly the biasness in the sample and treating the sample as a random one, the maximum likelihood

estimators (mle) for the bivariate normal model are: �̂�𝑥 = 75.2526, �̂�𝑦 = 1.07613, �̂�𝑥 = 8.5317, �̂�𝑦 = 0.1203 and �̂� = 0.4762.

Comparing the mles and the descriptive statistics of the corresponding p.d.f. of the posterior distributions under the correct

model, the following remarks can be made. First, the maximum likelihood underestimates the mean age and overestimates the

mean FDG PET score of the population of interest, since �̂�𝑥 is close to the 2.5% percentile point of the posterior distribution

of 𝜇𝑥 and �̂�𝑦 is larger than the 75% percentile point of the corresponding posterior distribution. Second, only a small portion

(< 2.5%) of the accepted values of the correlation coefficient 𝜌 is larger than the value of the mle (�̂� = 0.4762). Finally, the mles

of the standard deviations 𝜎𝑥 and 𝜎𝑦 do not suffer from the same problems as the mles of the mean values.

Source code to reproduce the results of this section (Table 1 and Figure 2) as well as Figure 1 is available as Supporting

Information on the journal’s web page (http://onlinelibrary.wiley.com/doi/10.1002/bimj.201900046/suppinfo).

5 DISCUSSION

The proposed modeling approach of Berkson’s paradox relies on the fact that Berkson’s paradox is actually a selection bias

problem, which occurs when individuals satisfying specific properties are overrepresented in the sample. Therefore, the use

of the weighted distributions is a natural choice for modeling such data. The weight functions manage to describe different

scenarios and degrees of biasness and allow, using the ABC rejection algorithm, to make inference on the population of interest.

As with any Bayesian approach, the proposed ABC rejection algorithm is effected by the choice of the prior distributions. Prior

distributions, in general, can have a significant effect on the posterior distributions especially in cases in which a relatively small

number of data are available or the prior distributions are extremely sharp. In such cases, the posterior distributions are highly

effected by the prior distribution which reflects the prior knowledge about the parameters. On the contrary, using noninformative

priors results in posterior distributions that are mainly defined by the data. Since for Berkson’s paradox some prior knowledge

is expected to be available, at least for some parameters, the use of informative priors is recommended whenever is possible.

This approach was illustrated in a real data application for AD dementia.

The proposed method can be applied to r.v.s with known, based on previous knowledge, parametric form. If such information

is absented, model selection criteria using Bayes factors can be applied (for more details, see Marin, Pillai, Robert, & Rousseau,

2014). Finally, it is an open problem to generalize the method to deal with missing or censored data.

ACKNOWLEDGMENTS

Authors would like to thank the two anonymous reviewers and the Associate Editor for critically reading the manuscript and

suggesting substantial improvements. Data collection and sharing for this project was funded by the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense

award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomed-

ical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association;

Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir,

Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche, Ltd. and

its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO, Ltd.; Janssen Alzheimer Immunotherapy Research

& Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck &

Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation;

Pfizer, Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes

of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the

Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute

http://onlinelibrary.wiley.com/doi/10.1002/bimj.201900046/suppinfo
file:www.fnih.org


248 ECONOMOU ET AL.

for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of

Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

CONFLICT OF INTERESTS

The authors have declared no conflict of interest.

ORCID

Polychronis Economou https://orcid.org/0000-0001-6452-5920

Apostolos Batsidis https://orcid.org/0000-0002-4491-4387

George Tzavelas https://orcid.org/0000-0002-3284-4342

Panagiotis Alexopoulos https://orcid.org/0000-0002-5742-1733

R E F E R E N C E S

Afonso, L., & Corte Real, P. (2016). Using weighted distributions to model operational risk. ASTIN Bulletin, 46(2), 469–485.

Alavi, S., & Chinipardaz, R. (2007). The dependence structure in bivariate weighted distributions. Far East Journal of Theoretical Statistics, 23(1),

19–29.

Alexopoulos, P., Grimmer, T., Perneczky, R., Domes, G., & Kurz, A. (2006). Progression to dementia in clinical subtypes of mild cognitive impairment.

Dementia and Geriatric Cognitive Disorders, 22, 27–34.

Alzheimer’s Association (2016). 2016 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 12(4), 459–509.

Arnold, B., & Nagaraja, H. (1991). On some properties of bivariate weighted distributions. Communications in Statistics - Theory and Methods,

20(5-6), 1853–1860.

Berkson, J. (1946). Limitations of the application of fourfold table analysis to hospital data. Biometrics Bulletin, 2, 47–53.

Csilléry, K., Blum, M., Gaggiotti, O., & François, O. (2010). Approximate Bayesian computation (ABC) in practice. Trends in Ecology & Evolution,

25(7), 410–418.

Diggle, P. J., & Gratton, G. J. (1984). Monte Carlo statistical methods of inference for implicit statistical models. JRSC- Series B, 46(2), 193–227.

Drew, L. (2018). An age-old story of dementia. Nature, 559, S2–S3.

Duong, T., Goud, B., & Schauer, K. (2012). Closed-form density-based framework for automatic detection of cellular morphology changes. Proceed-
ings of the National Academy of Sciences, 109(22), 8382–8387.

Feinstein, A., Walter, S., & Horwitz, R. (1986). An analysis of Berkson’s bias in case-control studies. Journal of Chronic Diseases, 39(7), 495–504.

Fisher, R. (1934). The effect of methods of ascertainment upon the estimation of frequencies. Annals of Eugenics, 6(1), 13–25.

Fritsch, T., McClendon, M., Wallendal, M., Hyde, T., & Larsen, J. (2014). Prevalence and cognitive bases of subjective memory complaints in older

adults: Evidence from a community sample. Journal of Neurodegenerative Diseases, 2014, 176843.

Geneletti, S., Best, N., Toledano, M. B., Elliot, P., & Richardson, S. (2013). Uncovering selection bias in case-control studies using Bayesian post-

stratification. Statistics in Medicine, 32, 2555–2570.

Greenland, S. (2003). Quantifying biases in casual models: Classical confounding vs. collider-stratification bias. Epidemiology, 14, 300–306.

Grimmer, T., Beringer, S., Kehl, V., Alexopoulos, P., Busche, A., Förstl, H., … Kurz, A. (2015). Trends of patient referral to a memory clinic and

towards earlier diagnosis from 1985–2009. International Psychogeriatrics, 27(12), 1939–1944.

Gupta, R. C., & Kirmani, S. (1990). The role of weighted distributions in stochastic modeling. Communications in Statistics: Theory and Methods,

19(9), 3147–3162.

Hernan, M., Hernandez-Diaz, S., & Robins, J. (2004). A structural approach to selection bias. Epidemiology, 15, 615–625.

Ishibashi, K., Onishi, A., Fujiwara, Y., Oda, K., Ishiwata, K., & Ishii, K. (2018). Longitudinal effects of aging on 18F-FDG distribution in cognitively

normal elderly individuals. Scientific Reports, 8(1), 115579.

Izadkhah, S., Amini, M., & Borzadaran Mohtashami, G. R. (2016). Preservation of dependence concepts under bivariate weighted distributions.

Communications in Statistics - Theory and Methods, 45(15), 4589–4599.

Jack, C., Bennett, D., Blennow, K., Carrillo, M., Dunn, B., Haeberlein, S., … Sperling, R. (2018). NIA-AA research framework: Toward a biological

definition of Alzheimer’s disease. Alzheimer’s & Dementia, 14(4), 535–562.

Jain, K., & Nanda, A. (1995). On multivariate weighted distributions. Communications in Statistics-Theory and Method, 24(10), 2517–2519.

Jiang, J., Sun, Y., Zhou, H., Li, S., Huang, Z., Wu, P., … Alzheimer’s Disease Neuroimaging Initiative (2018). Study of the influence of age in 18F-FDG

pet images using a data-driven approach and its evaluation in Alzheimer’s disease. Contrast media & molecular imaging, 2018, 3786083.

Mahfoud, M., & Patil, G. (1982). On weighted distributions. In Statistics and Probability: Essays in Honor of C.R. Rao (pp. 479–492). North-Holland,

New York: John Wiley & Sons, Ltd.

Marin, J., Pillai, N., Robert, C., & Rousseau, J. (2014). Relevant statistics for Bayesian model choice. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 76(5), 833–859.

Morgan, L. S. (Ed.). (2013). Handbook of causual analysis for social research. New York: Springer.

https://orcid.org/0000-0001-6452-5920
https://orcid.org/0000-0001-6452-5920
https://orcid.org/0000-0002-4491-4387
https://orcid.org/0000-0002-4491-4387
https://orcid.org/0000-0002-3284-4342
https://orcid.org/0000-0002-3284-4342
https://orcid.org/0000-0002-5742-1733
https://orcid.org/0000-0002-5742-1733


ECONOMOU ET AL. 249

Nanda, A., & Jain, K. (1999). Some weighted distribution results on univariate and bivariate cases. Journal of Statistical Planning and Inference,

77(2), 169–180.

Navarro, J., Ruiz, J., & Aguila, Y. D. (2006). Multivariate weighted distributions: A review and some extensions. Statistics, 40(1), 51–64.

Nelsen, R. B. (2006). An introduction to copulas. New York: Springer-Verlag.

Patil, G., & Rao, C. (1978). Weighted distributions and size-biased sampling with applications to wildlife populations and human families. Biometrics,

34(2), 179–189.

Pearl, J. (1995). Casual diagrams for empirical research. Biometrika, 82(4), 669–688.

Peritz, E. (1984). Berkson’s bias revisited. Journal of Chronic Diseases, 37(12), 909–916.

Prince, M., Knapp, M., Guerchet, M., McCrone, P., Prina, M., Comas-Herrera, A., … Salimkumar, D. (2014). Dementia UK: Second Edition —
Overview. London, UK: Alzheimer’s Society.

Rao, C. (1965). On discrete distributions arising out of methods of ascertainment. Sankhyā: The Indian Journal of Statistics, Series A, 27(2/4), 311–324.
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